From Vlasov Equation to Degenerate Nonlocal Cahn-Hilliard Equation

نویسندگان

چکیده

Abstract We provide a rigorous mathematical framework to establish the hydrodynamic limit of Vlasov model introduced in Takata and Noguchi (J. Stat. Phys. 172:880-903, 2018) by order describe phase transition fluids kinetic equations. prove that, when scale parameter tends 0, this converges nonlocal Cahn-Hilliard equation with degenerate mobility. For our analysis, we introduce apropriate forms short long range potentials which allow us derive Helmhotlz free energy estimates. Several compactness properties follow from energy, dissipation averaging lemmas. In particular new weak bound on flux.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cahn-hilliard Equation

1. Steady states. There are many two component systems in which phase separation can be induced by rapidly cooling the system. Thus, if a two component system, which is spatially uniform at temperature T1, is rapidly cooled to a second sufficiently lower temperature T2, then the cooled system will separate into regions of higher and lower concentration. A phenomenological description of the beh...

متن کامل

Upper Bounds for Coarsening for the Degenerate Cahn-hilliard Equation

The long time behavior for the degenerate Cahn-Hilliard equation [4, 5, 10], ut = ∇ · (1− u)∇ [Θ 2 {ln(1 + u)− ln(1− u)} − αu− 4u ] , is characterized by the growth of domains in which u(x, t) ≈ u±, where u± denote the ”equilibrium phases;” this process is known as coarsening. The degree of coarsening can be quantified in terms of a characteristic length scale, l(t), where l(t) is prescribed vi...

متن کامل

Interface Solutions of a Degenerate Cahn - Hilliard Equation

We present an analysis of the equilibrium diiusive interfaces in a model for the interaction of layers of pure polymers. The discussion focuses on the important qualitative features of the solutions of the nonlinear singular Cahn-Hilliard equation with degenerate mobility for the Flory-Huggins-de Gennes free energy model. The spatial structure of possible equilibrium phase separated solutions a...

متن کامل

On the Cahn{hilliard Equation with Degenerate Mobility

An existence result for the Cahn{Hilliard equation with a concentration dependent diiusional mobility is presented. In particular the mobility is allowed to vanish when the scaled concentration takes the values 1 and it is shown that the solution is bounded by 1 in magnitude. Finally applications of our method to other degenerate fourth order parabolic equations are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2023

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-023-04663-3